Theory of filtered type-II parametric down-conversion in the continuous-variable domain: Quantifying the impacts of filtering
نویسندگان
چکیده
Parametric down-conversion (PDC) forms one of the basic building blocks for quantum optical experiments. However, the intrinsic multimode spectral-temporal structure of pulsed PDC often poses a severe hindrance for the direct implementation of the heralding of pure single-photon states or, for example, continuous-variable entanglement distillation experiments. To get rid of multimode effects narrowband frequency filtering is frequently applied to achieve a single-mode behavior. A rigorous theoretical description to accurately describe the effects of filtering on PDC, however, is still missing. To date, the theoretical models of filtered PDC are rooted in the discrete-variable domain and only account for filtering in the low-gain regime, where only a few photon pairs are emitted at any single point in time. In this paper we extend these theoretical descriptions and put forward a simple model, which is able to accurately describe the effects of filtering on PDC in the continuous-variable domain. This developed straightforward theoretical framework enables us to accurately quantify the tradeoff between suppression of higher-order modes, reduced purity, and lowered Einstein–Podolsky–Rosen entanglement, when narrowband filters are applied to multimode type-II PDC.
منابع مشابه
Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملFree Vibration Analysis of Nonuniform Microbeams Based on Modified Couple Stress Theory: an Analytical Solution
In this study, analytical solution is presented to calculate the free vibration frequencies of nonuniform microbeams. Scale effects are modelled using modified couple stress theory and the microbeam is assumed to be thin while Poisson's ratio effects are also taken into account. Nonuniformity is presented by exponentially varying width among the microbeam while the thickness remains constant. R...
متن کاملAnalysis of a solid state wave gyroscope with thin shell cylindrical resonator and calculation of its conversion factor
In this work the equations of motion of a Solid State Wave Gyroscope (SWG) with rotary thin cylindrical shell resonator is analyzed using the shell and plates elasticity theory. The gyroscope conversion factor found in this analytical study corresponds with the experimental results obtained and listed in the References. The function of the SWG to measure the angular velocity or the rotating ang...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014